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Seasonal migrations are a widespread and broadly successful strategy for animals to

exploit periodic and localized resources over large spatial scales. It remains an open

and largely case-specific question whether long-distance migrations are resilient to

environmental disruptions. High levels of mobility suggest an ability to shift ranges that

can confer resilience. On the other hand, a conservative, hard-wired commitment to

a risky behavior can be costly if conditions change. Mechanisms that contribute to

migration include identification and responsiveness to resources, sociality, and cognitive

processes such as spatial memory and learning. Our goal was to explore the extent to

which these factors interact not only to maintain a migratory behavior but also to provide

resilience against environmental changes. We develop a diffusion-advection model of

animal movement in which an endogenous migratory behavior is modified by recent

experiences via a memory process, and animals have a social swarming-like behavior

over a range of spatial scales. We found that this relatively simple framework was able

to adapt to a stable, seasonal resource dynamic under a broad range of parameter

values. Furthermore, the model was able to acquire an adaptive migration behavior

with time. However, the resilience of the process depended on all the parameters under

consideration, with many complex trade-offs. For example, the spatial scale of sociality

needed to be large enough to capture changes in the resource, but not so large that the

acquired collective information was overly diluted. A long-term reference memory was

important for hedging against a highly stochastic process, but a higher weighting of more

recent memory was needed for adapting to directional changes in resource phenology.

Our model provides a general and versatile framework for exploring the interaction of

memory, movement, social and resource dynamics, even as environmental conditions

globally are undergoing rapid change.

Keywords: PDE model, social learning, climate change resilience, seasonal migration, memory

1. INTRODUCTION

Seasonal migrations are widespread among terrestrial, aquatic, avian and invertebrate species
(Dingle, 2014). For many species, migration is an extremely successful strategy, allowing a far
greater number of individuals to inhabit landscapes which might not otherwise be able to support
large numbers year round (Fryxell et al., 1988). The evolutionary stability of a migratory strategy
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essentially relies on the fitness benefits of accessing seasonal
resources, whether for energetic gain, predator avoidance,
or a suitable environment for reproduction, outweighing the
energetic and survival related costs of migration (Avgar et al.,
2014).

Proximate causes, drivers and mechanisms for migration
vary widely across and even within species (Berthold, 1999;
Shaw, 2016). Some migrants follow a “green wave” of spring
vegetation as it flowers across altitudinal or latitudinal gradients
(Bischof et al., 2012; Kölzsch et al., 2015; Merkle et al., 2016).
These migrations can be considered “tactical,” as they can
occur—as an extreme simplification—purely as response to local
conditions. Other migrants perform long-distance migrations in
anticipation that critical resources will be available at the time
of arrival at the end point of migration (Abrahms et al., 2019).
This second behavior involves the greatest trade-off between
the costs and benefits of accessing those highly seasonal and
localized resources. This approach can be considered “strategic”
in the sense that it is driven not by immediate cues but by an
anticipation based on prior experience (Bracis andMueller, 2017;
Merkle et al., 2019; Bauer et al., 2020).

Migration can be a very successful strategy, with migratory
ecotypes of the same species often outnumbering non-migratory
conspecifics. Migratory caribou and reindeer Rangifer tarandus,
for example, are several orders of magnitude more abundant
than non-migratory woodland, mountain and forest ecotypes
(Festa-Bianchet et al., 2011; Uboni et al., 2016). However, the
question of whether migratory animals are more or less resilient
to environmental disruptions in the environment remains
open and largely case-specific (Moore and Huntington, 2008;
Hardesty-Moore et al., 2018; Xu et al., 2021). On the one hand,
migratory species may be more vulnerable as disruptions in
either of the seasonal ranges or along a migratory corridor
can have significant negative impacts (Wilcove and Wikelski,
2008; Seebacher and Post, 2015; Kauffman et al., 2021). On
the other hand, migratory species might be more resilient
due to their general wide-ranging mobility (Robinson et al.,
2009). The resilience of a migratory population depends on
the plasticity and adaptability of the population, which can
take multiple forms, reflecting variation in where, when and
whether the migration occurs (Gurarie et al., 2017; Xu et al.,
2021).

Cognitive processes, in particular spatial memory, have been
shown to be important mechanisms for the reinforcement and
maintenance of migration (Merkle et al., 2019; Bauer et al.,
2020). Similarly, sociality and social learning are likely essential
to maintaining migration (Guttal and Couzin, 2010; Fagan et al.,
2011; Berdahl et al., 2018; Jesmer et al., 2018). However, the
interacting role of sociality and spatial memory for the plasticity
of migration and the resilience of the behavior when faced
with a changing environment are generally unknown, though
it has been hypothesized that the importance of these cognitive
processes depend on the predictability of these resources (Riotte-
Lambert and Matthiopoulos, 2020). Because the scenarios
underlying migration are manifold and complex, mathematical
modeling may provide some insights and help clarify where,
when, and under what conditions we might expect migration

behavior to emerge, to be adaptive, to be maladaptive, or
to collapse.

Here, we develop a diffusion-advection model with sociality
and memory to explore the resilience of a migratory population
under various dynamic, seasonal resource distributions. In
formulating the model, our goal was to identify the minimum set
of movement and memory parameters required to generate an
adaptive, migratory behavior. This includes the ability to learn
to migrate from non-migratory initial conditions, simulating
the release of naive animals in a seasonal environment (Jesmer
et al., 2018); to lose the propensity to migrate if the resource
distribution does not require it, also a commonly observed
phenomenon (Wilcove and Wikelski, 2008); and to assess the
resilience or fragility of a migratory population against changing
resource distribution dynamics, including both stochasticity and
trends in spatial and temporal distributions, mirroring the effects
of climate change (Park et al., 2020).

We anticipated that under many conditions a blending
of tactical (i.e., direct response to resource availability or
perception) and strategic (i.e., memory-driven and forward-
thinking) behavior will help foragers navigate dynamic, seasonal
environments. Over-reliance on either strategy should be
maladaptive. We further anticipated that a shorter-term memory
updating is needed to navigate trends in resource spatial
distribution and temporal distribution (phenology), but that a
longer-term reference memory is needed to navigate resource
distributions that are stochastic (Lin et al., 2021). Similarly, we
anticipated that a balance between very low sociality and extreme
sociality would lead to the most resilient migratory process.

2. METHODS

2.1. Memory Movement Model
In designing our study, our goal was to develop a minimal
heuristic in which the following processes were explicitly
modeled: (1) Random or exploratory movement, (2) attraction
to resources, (3) sociality in the movements, (4) a long-term
(or reference) memory of large-scale movement behavior, and
(5) a short-term (or working) memory that updates movement
behavior based on recent experience.

A diffusion-advection equation provided a computationally
efficient and versatile framework for examining just such a
system. We consider a population moving in one dimension in
a constrained domain D and distributing itself according to the
following equation:

−
∂u

∂t
= −ε

∂2u

∂x2
+ α

∂

∂x

(
u
∂h

∂x

)
+ β

∂

∂x

(
vs(u)

)
+
∂

∂x

(
u vm(t)

)

(1)
where u represents the population distributed in time and space.
The first term is the diffusion term, capturing the fast time-scale
exploration and “random” movements of individuals, with ε is
the diffusion rate.

The second term represents the attraction to a dynamic
resource h, with the proportionality of the advection to the
gradient of the resource given by the parameter α (note, the
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population and resource distributions are functions of both space
and time u(x, t) and h(x, t) - we omit the dependent variables
in the notation for brevity). This is the well-studied standard
chemotaxic resource-following behavior. We borrow the general
notation from earlier related work expanding diffusion-advection
models to incorporate non-local information (Fagan et al., 2017)
and behavioral switching (Fagan et al., 2019).

The third term captures the collective or social advection term
of the population via a non-local, density dependent function
vs(u, x). If this function takes the form of a convolution around
a non-local kernel k, i.e., vs(u) = k(x) ∗ u(x), and if that
kernel is odd, an attractive or “swarming” behavior can be
generated (Mogilner and Edelstein-Keshet, 1999). We use the
kernel analyzed by Mogilner and Edelstein-Keshet (1999):

k(x) =
x

2λ2
exp(−x2/2λ2).

The convolution of uwith this kernel has the property of pushing
the population in a positive direction when x < 〈u〉, and in a
negative direction when x > 〈u〉, where 〈u〉 is the mean location
of the population. The parameter λ is a length scale of sociality,
roughly one-half the size of the swarm, and β is a parameter that
quantifies the overall strength of sociality.

Finally, the last term captures the direct advection that
emerges from a memory-driven migratory behavior. This term
evolves with a set of parameters θy that slowly change each
year y ∈ {0, 1, 2, ...}, i.e., the count of periods τ : y = ⌊t/τ⌋.
The migration is specified by six parameters θ : the timing of
the start and duration of two anticipated seasons (e.g., summer
and winter) t1, 1t1, t2, 1t2, and the spatial coordinates of the
population centroid for each season x1 and x2. The remembered
migratory speed term is a simple step function given by:

vm(t, θy) =





0; t > t1 and t ≤ t1 +1t1

s12; t > t1 +1t1 and t ≤ t2

0; t > t2 and t ≤ t2 +1t2

s21; t > t2 +1t2 or t ≤ t1

(2)

where the migration speeds s12 and s21 from the respective ranges
are set such that they arrive at x1 at t1, depart at t = t1 + 1t1,
arrive at x2 at t = t2, and depart at t2 + 1t2. Thus, s12 = (x2 −
x1)/(t2−(t1+1t1)) and s21 = (x1−x2)/(t1−(t2−τ+1t2)). This
step-like migration function is a one-dimensional version of the
migration parameters estimated for individuals (Gurarie et al.,
2017) and populations (Gurarie et al., 2019) in empirical studies.

We consider these six parameters to be the known or
remembered determinants of the migratory behavior, with an
initial set θ0 determining the reference migration behavior. This
reference migration is updated each year by the experience
of the population. To perform this updating, we estimate a
new set of parameters θ̂y after each year, and combine these
new parameters with the reference parameters according to the
following weighted mean:

θy+1 = κy θo +
(
1− κy

)
θ̂y (3)

where each of the six parameters is updated according to
Equation 3 identically. The estimates θ̂y are obtained via a
least-squares minimization of the migration track (m(t, θ) =∫ t
0 vm(t

′, θy) dt′) against the spatial mean of the population
process in year y (i.e., û(t) =

∫
X uy(t, x)dx). The parameter κ ∈

(0, 1) captures the reliance on that long-termmemory.When κ =
0, all of the actionable memory is from the preceding year. When
κ = 1, the actionable memory is entirely the reference memory.

The model is confined to a one-dimensional bounded domain
[−χ ,χ], with no flux outside of the boundaries. Formally, this
no-flux condition means the following conditions must be met




ε ∂u
∂x − α

(
u ∂h
∂x

)
− β(vx(u))− (uvm(t)) = 0 where x = χ

−ε ∂u
∂x − α

(
u ∂h
∂x

)
− β(vx(u))− (uvm(t)) = 0 where x = −χ

In practice, the design of our resource space (see below) and
other parameterization lead to 0 or near 0 values of both h(x) and
u(x), and the simpler ∂u(−χ , t)/∂t = ∂u(χ , t)/∂t = 0 boundary
condition provides a good approximation.

As there are no birth or death processes, the total population
remains fixed and constant, for convenience integrating to 1.
Furthermore, the parameters remain constant throughout time,
with no adaptation or mutation-selection process. Our interest
is in the ability of a fixed set of movement and memory
parameters to navigate an intra- and interannually dynamic,
seasonal environment.

2.2. Seasonal Resource
We ran this model on a spatial domain x ∈ [−100, 100],
and a periodicity τ = 100 (i.e., 100 day years). We were
interested in an approximately periodic resource dynamic,
i.e., one in which h(x, t) ≈ h(x, t − τ )). We generated two
types of resource distributions. A “non-surfable” resource (island
resource), and weakly surfable resource (drifting resource). Both
are characterized by a peak in time and space centered at mx

at mt , and −mx at τ − mt (for example, locations 30 and
−30 at times 25 and 75, respectively). These pulses have a
shared time scale of duration st and a spatial scale of extent
sx, the standard deviation in the time and space dimension,
respectively. The island resource is simply two uncorrelated
bivariate normal distributions

h(x, t) = K (8(mx,mt , sx, st)+8(−mx, τ −mt , sx, st))

where 8 is the bivariate Gaussian distribution function,
and the normalizing constant K is selected such that the
average total amount of resource throughout the year is 1,
i.e., 1

τ

∫
T

∫
X h(x, t)dx dt = 1.

The drifting resource differs from the island resource in that
the total amount of resource at any given time

∫
X h(x, t)dx = 1.

This property is attained by distributing the resource as a re-
scaled beta distribution, where the shape and scale parameters
vary sinusoidally in such a way as tomake the standard deviations
and means match the desired values of mx,mt , sx, st (see
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Supplementary Materials for details). Both types of resources
are illustrated in Figure 1.

Within a given year, the resource is entirely symmetric:
hy(x, t) = hy(−x, τ − t). However, in scenarios exploring climate
change we allow the peaks to vary with directional trend and
stochasticity according to:mx(y) ∼ N(µx+γx y, σx) andmt(y) ∼
N(µt + γt y, σt), where the µ, γ and σ terms are the mean, slope
and variance, respectively, for the location and time duration
of the pulse. Thus, if γ = 0 and σ = 0, the conditions are
constant across years and if γx > 0 there is a shift of the resource
toward the extremes of the domain. While we did not explore
phenological shifts in timing, those can readily be modeled as
well. These trends model the pole-ward shift of peak resources
and the earlier spring phenology occurring with a warming global
climate (Renner and Zohner, 2018). The spatial and temporal
scales of the resource peak (sx and st) remain constant in all of
our simulations.

2.3. Metrics
The main metrics we were interested in are migration mismatch,
foraging efficiency and adaptation to directional trends.

Migration mismatch captures the combined difference
between the migration phenology and the resource phenology in
time and space. Spatial mismatch MMx is the absolute difference
between the migration targets and the resource peaks: MMx =
|x1 − mx| + |x2 + mx|. Temporal mismatch is the difference
between the arrival time and the peak of the resource if arrival
is post-peak, the difference between the departure time and the
peak of the resource if departure is pre-peak, and 0 if the seasonal
duration spans the peak, i.e., MMt = max{t1 − m1,m1 − (t1 +

1t1), 0} + max{t2 − m2,m2 − (t2 + 1t2), 0}. Thus, the total
mismatch is the sum of these: TM = MMx +MMt . A mismatch
of less than 1 is essentially perfect, a mismatch of 1–5 we consider
excellent, and beyond 50 the system can be said to have failed to
keep track of the resource dynamics.

To quantify the foraging efficiency, i.e., the organisms’ ability
to track the distribution of the resources over space and time,
we use a continuous form of the Bhattacharyya coefficient
(Bhattacharyya, 1943) which quantifies the similarity between
two distributions.We compute this coefficient at every time point
in a given year, and take the mean across the equilibrium year to
determine foraging efficiency (FE). Thus, the foraging efficiency
index is:

FE =
1

τ

∫ τ

0

∫ χ

−χ

√
u(x, t) h(x, t) dx dt

where the spatial integral is taken over the domain. This metric is
constrained to be between 0 and 1.

For simulations with a constant resource, we ran the
model until a quasi-equilibrium (stationary) state was achieved,
i.e., where the Bhattacharya index of the population distribution
across subsequent years reached a value of 0.99999. Once
stationarity was attained, we computed the migration mismatch
and foraging efficiency metrics, as well as the number of years
required to reach stationarity.

For numerical runs with climate change, we first run a
simulation with a given parameter set until stationarity, as above,
and then begin shifting the location of the resource poleward
with a slow, moderate or rapid trend (γx = 0.25, 0.5, and 1,

FIGURE 1 | Examples of various seasonal resource distribution functions, contrasting short duration, but wide pulses (σt = 3, σx = 12; left panels), long duration but

spatially concentrated pulses (σt = 12, σx = 3; right panels), and isolated resource pulses (upper panels) from the weakly drifting resource (lower panels). The total

amount of resource is identical across all scenarios. In the weakly drifting resources, the total amount is constant at all times, and uniform in the middle of the phase

(time = 0, 50, and 100).
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respectively), and/or by adding stochasticity (spatial standard
deviation 3, 6, 9, or 12). For stochasticity analyses, we compare
foraging efficiency across a range of the reference memory
parameter κ . For analyses that included directional trends, with
or without stochasticity, we quantified the ability of the system
to keep track of climate change with a spatial adaptation (SA)
index. This index is the ratio of the slope of the memory-
based migration location over time, i.e., SA = γ̂ /γx where
the adaptation slope estimate is the regression coefficient of the
spatial coordinate of the migration against time (i.e., mx,i =
γ̂xi + mx,0, where i is the year), and γx is the rate of drift of
the resource peak (Table 1). An SA equal to 1 suggests that the
process is keeping up with climate change, an SA of 0 indicates
that the process is not responding at all to climate change. Values
greater than 1 (super-adaptation) are possible, as are values less
than 1, which correspond to a loss of migration behavior. All
movement model parameters, resource parameters, and metrics
are summarized in Table 1.

2.4. Simulation Studies
We explored this model using numerical differencing of a
system of ordinary differential equations (ODE’s) approximating
the PDE in Equation (1) with the Runge-Kutte algorithm
using the deSolve (Soetaert et al., 2010) and ReacTran
(Soetaert and Meysman, 2012) packages in R. We additionally
used the nlsLM function in package minpack.LM (Elzhov
et al., 2016) for robust and fast annual estimation of the
migration parameters. The complete code is available as
an R package (memorymigration) available on GitHub
at https://github.com/EliGurarie/memorymigration and as an
interactive Shiny application at https://spot3512.shinyapps.io/
memorymigrationshinyapp/.

We assessed a wide range of parameter values and resource
geometries and dynamics with the goal of answering the four
main questions: (1) Can this model adapt to a discrete shift in
peak resource location and timing? What is the relative role of
memory and sociality for adaptation? (2) Can this model acquire
a migratory behavior from a non-migratory initial condition? (3)
What is the role of a referencememory for dealing with stochastic
resource dynamics? (4) Can this model adapt when the resource
peaks shifts in space? Details of parameter combinations and
reported metrics are provided in respective results sections.

3. RESULTS

3.1. Adaptation to Resource Phenology
The ability of this system to attain a stable, migratory state that
matches the dynamics of the resource is illustrated in Figure 2.
In the illustrated scenario, it takes nearly 40 years to attain
an equilibrium, and the eventual steady state is one where the
centroid of the migration lines up exactly with the centroid of
the resource, and the arrival timing coincides with the peak of
resource availability. Notably, the path to this equilibrium is
somewhat indirect, with the later winter range taking more time
to stabilize than the earlier summer range. The eventual steady
state is one where the foraging efficiency is relatively high, near
0.6 compared to an initial value of 0.3. However, the increase in

TABLE 1 | Table of parameters, variables and metrics.

MEMORY MIGRATION MODEL

ε Diffusion

α Strength of resource following

β Strength of sociality

λ Spatial scale of sociality

κ Initial weighting of reference vs. working memory

x1, x2 location of population centroids in summer and winter

t1, 1t1 start and duration of summer season

t2, 1t2 start and duration of winter season

(long-term) memory vs. working (short-term) memory

RESOURCE DYNAMICS

τ duration of period (year)

mx , −mx spatial coordinate of resource peak for summer and winter

mt, τ −mt timing of resource peak for the summer and winter

σx , σt time duration and spatial scale of resource pulse

γx , γt rate of change of peak location and timing of resource

ψx , ψt standard deviation of peak location and timing

METRICS

MMx spatial migration mismatch

MMt temporal migration mismatch

TM total mismatch

FE foraging efficiency

SA spatial adaptation index

the foraging efficiency was not entirely monotonic, as the system
moved through some slightly sub-optimal stages in adjusting its
migration behavior.

We ran this process for 8,100 parameter combinations
crossing different values of the movement process (α, β and λ)
and resource characteristics (σx and σt), and present the total
mismatch (TM) against all those combinations in Figure 3. In
all of these simulations, memory was entirely recent (κ = 0),
since there can be no benefit to relying on a sub-optimal reference
memory. We compared a set of diffusion rates ε between 1 and 8,
but only illustrate results for ε = 4.

A well-matched migration phenology (TM < 5) occurred
under very many combinations of parameter values, but all
parameters play interacting roles. Among the more intuitive
results are that greater values of α (resource following) lead
to an improved ability to match the migration. Resource peaks
with larger spatial extent (higher σx) are generally better for
migration matching.

Less intuitive was the high importance of the sociality
parameters, in particular the spatial scale of the swarming. Higher
levels of social attraction (β) led to improvedmigrationmatching
except in those cases where the sociality scale λ was high. Thus,
for example, at λ = 20, no simulations at β ≥ 200 managed to
acquire or maintain a matched migration. However, at λ = 50
or 100, the migration was slightly better matched at high values
of β (Figure 3). The spatial extent of the swarm was a remarkably
significant variable. Smaller swarms were able tomatchmigration
only at low values of social attraction (β = 200), and relatively
high values of resource attraction (α ≥ 600).
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FIGURE 2 | Example of adaptation to a shift in resource peak. The initial (year 0) behavior migrates to locations 50 and –50 at days 15 and 60, whereas the resource

peak is at 30 and –30, peaking at times 25 and 75. The panels show (A) the first 14 years of the simulation; (B) the centroid of the annual movement of the population

is shown in panel b, with dark blue to red colors indicating 0–40 year; (C) annual foraging efficiency across years; (D) migration timing parameters for each year, with

orange segments indicating arrival and departure from the summering (northern) grounds, and the blue segments indicating timing of arrival and departure at the

wintering grounds; (E) migration arrival and departure location across years, with blue and orange indicating winter (southern) and summer (northern) locations.

Random forest analyses, whether on the log of total mismatch
or on the classification of a perfect match, uniformly show that
the most important variables (Breiman, 2001) were α and λ (4.14
and 4.02 proportional increase in MSE), and the least important
was σt , with a 0.5 proportional increase.

Overall, foraging efficiency was strongly correlated with
migration matching, as expected. At high mismatch (> 50),
foraging efficiency was low (mean 0.29, s.d. 0.16) compared
to the near-perfect matching migrations (mean 0.58, s.d. 0.14).
However, somewhat higher mismatch (1 to 5) showed an even
higher overall foraging efficiency (mean 0.62, s.d. 0.18–see also
Figure 4).

3.2. Learning to Migrate
Figure 5 illustrates the ability of the model animals to learn to
migrate in a weakly drifting resource environment with a narrow
pulse of resource peaking at 30 and –30 (at days 25 and 75),
but a uniform distribution of resource at times 0 and 50. In
order to learn to migrate, the system needed to have a higher
exploratory impulse (higher diffusion constant ε), a stronger
resource advection (higher α) and somewhat weaker sociality
(lower β). The qualitative behavior of this process was to start
drifting toward the summer resource, while slowly developing a
weak pulse toward the winter resource as well. After first locking
in on the summer resource, the winter migration, driven both by
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FIGURE 3 | Migration phenology matching across six model parameters. Low and high diffusion (ε = 1 and 8 in upper and lower panel blocks), tight, medium and

loose swarms (λ = 20, 50, 100) left to right panels. Within each of these blocks, high values of the resource following parmaeters α from 0 to 1,000 are left to right,

and higher values of the sociality parameter β are bottom to top. Within each of the combinations of ε, λ,α,β, we show results ranging across 5 values of resource

duration (σt, 3–15 left to right), and 6 values of resource extent (σx , 3–15 bottom to top), as in the zoomed-in panel (bottom right; drawn from α = 200, β = 200,

λ = 100). The color scheme reflects the total mismatch, i.e., the sum of the absolute differences between the migration timing and locations from the resource peak.

The white squares represents parameter combinations where the PDE could not be solved for artifactual numerical reasons, that all correspond to a failed adaptation

(high mismatch).

FIGURE 4 | Box-plots of foraging efficiency against mismatch across several values of foraging patch duration.

high diffusion and high resource following, slowly extended itself
until both narrow peaks of resource were consistently reached.

The model had, in general, a difficult time learning migration
from a non-migratory initial condition. Out of 4,047 successful
runs, only four attained mismatch below 1, and 130 below 5.
Conditions that were more conducive to learning migration were
pulses of longer duration (high σt), but smaller in scope (low σx),
suggesting that the feedback that encourages migration needs to

be compact in space but long enough in duration to lock in to
the memory.

3.3. Directional Climate Change
To assess the ability of the system to adapt to a trending climate,
we generated scenarios with slow, moderate and fast outward
directional shifts in the resource peak (0.25, 0.5, and 1 units/year,
respectively). We then assessed 40 parameter combinations for
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FIGURE 5 | Example of model learning to migrate. The resource is a “weakly drifting” resource and the initial (year 0) condition is non-migratory. The simulation was

run for 100 years, and a sampling of those years (labeled) are presented in (A): all years from 0 to 10, followed by 20, 40 and 100. Otherwise, panels are as in

Figure 2. Additional parameter values were ε = 5, α = 500, β = 50 and λ = 40.

each of those scenarios, high and low values of resource following
(α = 400 and 100), high and low values of sociality (β = 400 and
100) and 10 values of the spatial scale of sociality (λ = 20 to 200).
The spatial and temporal scale of the resource pulses were fixed
to σx = 12 and σt = 6, a combination which analyses in section
3.1 showed were generally “easy” to adapt to. We computed the
adaptation index and foraging efficiency for each of the 120 runs
(Figure 6). We were interested in the dynamics against λ due to
the consistently high importance of this parameter for matching
migration in steady states. Our main index of interest was the
spatial adaptation (SA) to trends.

As Figure 6 shows, higher values of resource following (α =
400; orange circles) are nearly universally better for keeping

up with climate change (SA values near 1). Furthermore, when
combined with high sociality (β = 400; right panels), nearly all
parameter combinations do a good job keeping up with climate
change (SA values ranging between 0.53 and 0.85 for a swarm
size greater than 50). However, that maximum value is still less
than 1, suggesting that truly matching a steadily drifting trend
is very difficult. Smaller social spatial scales (λ < 50) have a
very hard time adapting when the social attraction is high, but
do fairly well when social attraction is low. Larger sized swarms
do progressively worse across more parameterizations, e.g., in the
most rapid climate change scenario, the SA drops from 0.83 to –
0.13 as the swarm increases in size from 40 to 200 (encompassing,
essentially, the entire spatial domain).
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FIGURE 6 | Adaptation to a steadily drifting resource. In three scenarios, the spatial coordinates of the resource drift by 0.25, 0.5, and 1 unit per year (top to bottom,

respectively). The y-axis is the spatial adaptation index (SA), i.e., the trend of the memory-driven migration divided by the resource drift trend. Values near 1 indicate a

behavior that keeps up with climate change, values near 0 indicate no change in migration behavior, and negative values indicate a trend that is opposite to the climate

trend. We compare across spatial scales of sociality (λ–x-axis), for low and high values resource following (α = 400 and 100–orange and blue dots) and low and high

values of sociality (β = 100 and 400, left and right panels). The size of the circles is proportional to the foraging efficiency of the resulting parameter combinations. The

bottom-right boxplots indicate the final year foraging efficiency against SA; purple and blue boxes indicate the highest values, orange and gray lower values.

A rather more dramatic pattern is visible for the lower
foraging attraction scenario (α = 100; blue circles). Notably,
no parameter combination at this value comes close to keeping
up with the rapid climate change (SA range –0.64 to 0.13). For
slower climate change, however, there is a window of values for
the swarm size between 40 and 80, where the SA exceeds 1, but
then crashes quite rapidly to negative values of SA as that swarm
size increases. These “super-adaptive” processes indicate a unique
sweet spot where a swarm is large enough to capture and adapt
to the drifting resource, but not so large that the information
gathered in a given year is too weak to adjust the migratory
behavior in a following year.

As anticipated, better adaptation to the drifting resource
correlated strongly with higher foraging efficiency (inset
boxplots).

3.4. Reference Memory and Stochasticity
While recent memory can be helpful for adapting to a single
novelty or a smoothly changing conditions, we hypothesized that

a more conservative approach that relies on a reference memory
may be beneficial when conditions change stochastically. We
tested this hypothesis by solving a set of models across a range of
κ values fom 0 (all recent memory) to 1 (all reference memory).
In these scenarios, we ran the system for as many years as needed
with no stochasticity to acquire a stationary state (i.e., similarity
index greater than 1-1e-6). We then used the stationary state as
the reference memory, and then ran the process for an additional
50 years with a stochasticity (i.e., standard deviation in peak
location of the resource) ranging from 0 to 12, and present the
resulting average foraging efficiency (Figure 7).

Overall, as expected, the greater the stochasticity, the lower
the foraging efficiency. Further, as we predicted, highest level of
κ can significantly help foraging efficiency, with some variation
across the spatial scale of sociality, especially in more highly
stochastic scenarios. When that scale of sociality is high enough
(λ = 120, blue colors) there is greater probability of overlap with
a stochastic resource, and a conservative, stable migratory regime
is much more beneficial in the long run.
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3.5. Stochasticity and Trends
We added 30 years of directional trends to the variously
stochastic process described above, and assessed the adaptation
index against the reference memory parameter κ (Figure 8).
Over-reliance on reference memory (κ = 1) by definition
does not allow the system to keep up with climate change,
leading to an adaptation index of 0. However, in many cases a
balancing of recent and reference memory (κ value between 0.6
and 0.8) in many cases was slightly but significantly better than
relying entirely on recent memory. The smaller spatial scale (in
the selected parameter space) does a generally better job than
the larger spatial scale at lower stochasticity. At higher level

of stochasticity, however, the larger spatial scale outperforms
the smaller spatial scale, which completely loses track of the
climate change.

4. DISCUSSION

Animals navigate complex, dynamic and patchy environments.
When there is a strongly localized and seasonal component
to the resource dynamics, movement strategies limited to
straightforward resource-following taxis necessarily fail to
efficiently exploit available resources. It is in these cases,
quite common in the natural world, that seasonal migration

FIGURE 7 | Foraging efficiency (FE) across various values of reference memory κ (x-axis) for increasing amounts of interannual stochasticity (ψx , panels left to right),

and two values of sociality spatial scale λ = 80 and 120. For the processes with non-zero stochasticity (ψx > 0), the process was run 90 times for values of κ. Points

represent the average of the FE’s across all 50 years and 90 replicates. In these scenarios, the resource following parameter α = 100, the social attraction β = 400

and diffusion ε = 4. Note that the y-axis scale is constrained over a relatively narrow range (0.6–0.7).

FIGURE 8 | Role of reference memory in adapting to climate change for increasingly stochastic resource dynamics. We ran the model with a moderate rate of climate

change (mean shift: 0.5/year) at five increasing levels of stochasticity (inter-annual standard deviation of resource peak 0, 3, 6, and 12, left to right panels). For

non-zero stochasticity, we ran the process 30 times and present the mean and standard error of the spatial adaptation index across various values of the reference

memory parameter κ: where κ = 0, the system modifies its migration based entirely on recent experiences; at κ = 1, the memory never changes from the reference

memory. Other parameter values are resource following α = 100, social attraction β = 400, and diffusion ε = 4.
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becomes a viable, even necessary, strategy. However, when
resources start shifting in space and time—as is occurring at
an accelerated pace with recent global climate change—the
migration phenology itself must exhibit some plasticity. It is our
conjecture that this plasticity is facilitated by a memory-driven
process in which recent experiences inform strategic behaviors in
subsequent years.

By allowing a population to adjust its migratory behavior
based on recent experiences with the resource location, themodel
we presented here emulated (a) the successful navigation of
an environment with temporally and spatially isolated seasonal
resource patches, (b) the emergence of a migratory behavior from
an essentially resident or naive initial condition, and (c) some
intrinsic robustness to changes in those environmental resources,
whether steadily shifting trends or inter-annual stochasticity. The
relatively simple, social and memory-driven mechanism was able
to adapt to long-term changes in resource dynamics, even with
inter-annual stochasticity, and may thereby provide a framework
with which the interaction of memory, movement, social and
resource dynamics can be further explored.

Importantly, our model was in no ways evolutionary, as it
contained no birth-death processes or selection pressures. Thus,
we used foraging efficiency as a convenient metric of the utility of
migration, though this was not a measure explicitly maximized
by the model. Other metrics, such as foraging efficiency in a
given season, or probability of survival or reproduction relative to
resource availability (Bauer et al., 2020) may respond differently
across model parameters and could be useful in understanding
the relative success of alternative migratory strategies in different
contexts. However, the overall annually averaged foraging
efficiency metric provided the broadest linkage between resource
dynamics and animals’ locations and was consistent with the
minimal biological assumptions and generality of our framework.

4.1. Adaptation and Resiliency
Our goal was to understand the combinations of factors that
lead to a resilient migration behavior. The model we describe
was a final iteration of a sequence of models which failed to
develop or maintain social migration behavior. For example, in
earlier versions memory was modeled as an attractive advection
mathematically identical to the resource attraction, but with
the attractor being the location of the population in previous
years. These models proved to be inefficient at generating a
consistent social migratory behavior, i.e., only under very specific
parameter combinations and “easy” conditions was a migratory
equilibrium attained, and that equilibrium was highly unstable
to perturbations. Only a clear, directed advective process with
an explicit seasonal signal (i.e., the remembered migration
timing, rates, and targets which were remembered in our model)
could generate the patterns we aimed to capture. This suggests,
somewhat indirectly, that migration behavior is unique as a
fundamental, long-term, and risky strategy, profoundly different
from the kind of tactical resource response which governs
shorter-scaled animal redistributions.

Similarly, iterations of the model that did not have some
amount of social cohesion tended to diffuse away without
establishing a consistent, migratory stationary state. In fact,

sociality parameters—in particular, the spatial scale λ—were,
unexpectedly among the most important parameters for
determining the resiliency of the process. Populations with
small spatial scales tended to have a more difficult time locking
in to an adaptive migratory pattern, and only when social
attraction was relatively weak. On the other hand, overly large
spatial scales compromised the ability of the process to track
climate change, due to a dilution of the population’s ability to
concentrate over available resource patches and remember the
corresponding benefits.

The ability to adapt a migration also depended strongly
on properties of the resource dynamics. In particular, the
reinforcement of memory and foraging is strongest when
patches are concentrated in time, but relatively large in space.
Interestingly, in most stable patterns, the eventual targeted
migration arrival time coincided with the peak, rather than the
beginning, of the resource dynamic. This indicates that the long-
distance social migration behavior may be particularly reinforced
when the targeted resource is very sudden. This is the case for the
rapid green-up that occurs in high latitudes as snow recedes in
tandem with extended day lengths leading to an intense green-
up period (Park et al., 2020) or, for example, when resources
are linked to the short-duration early blooming phenology of
very particular plants (Post and Forchhammer, 2007; Renner and
Zohner, 2018).

Even with no strong intrinsic propensity to migrate and
a weak phenological resource pulse to follow, our model
captured the ability to acquire a strong and adaptive migration
behavior (Figure 5). Learningmigration, however, requires a very
strong resource attraction, higher levels of exploratory behavior
(e.g., diffusion, and larger spatial scale of sociliaty), and—often—
many more years, findings that echo empirical observations
(Jesmer et al., 2018).

Despite the ability of the process to adapt under many
stable conditions, our migration model (and, perhaps, migration
behaviors in general) can also be considered somewhat fragile.
Under many shifting conditions, e.g., increasing stochasticity,
rapidly shifting resources, a shift in some of the system
parameters, or even a shift in the spatial and temporal extent of
resources, migration can collapse and turn into a non-migratory,
residential behavior (Figure 3). This sensitivity may explain why
partially migratory populations are so common and, apparently,
evolutionary stable (Berthold, 1999; Chapman et al., 2011), as
well as the wide range of migration plasticity shown in wild
populations, even within a species (Xu et al., 2021).

4.2. Biological Interpretation of Parameters
Diffusion-advection models of animal movement and
redistribution are grounded in the general idea that animal
movements, somewhat like movements of physical particles,
combine random (diffusive) components with directed
(advective) components (Skellam, 1951; Turchin, 1998; Okubo
and Levin, 2001). While direct relationships between diffusion
models and movement data are somewhat tenuous (Gurarie and
Ovaskainen, 2011; Potts and Schlägel, 2020), as a theoretical tool
for exploring processes they are invaluable for their versatility
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and the relative ease of numeric computation of the partial
differential equations (PDEs) that describe themmathematically.

Despite its evident abstraction, our goal was to develop
a model where all parameters have well-defined biological
interpretations. The diffusion (ε) captures short time-scaled
randomness of movement, reflecting exploratory and short-term
dispersive behavior. The foraging advection strength (α) captures
the attraction of the population to better quality resources at a
relatively large scale. These two parameters, the basic ingredients
in diffusion-advection models of animal movement, have direct
parallels to empirically estimated properties of animal behavior:
diffusion is closely related to families of random walk models
(Gurarie and Ovaskainen, 2011) while the advective taxis is
related to the step and resource selection functions that are
routinely estimated from movement data (Potts and Schlägel,
2020). The spatial scale of the social group (λ) captures the spatial
extent of the population, i.e., a population-level home range
(Noonan et al., 2019). Diffusion-advection models can also be
interpreted as a probabilistic description of a single individual’s
movement. In this case, λ would correspond to an individual
home-range and β would be an individual’s tendency to be drawn
to the center of that home range, akin to an individual migratory
Ornstein-Uhlenbeck process (Gurarie et al., 2017).

The sociality parameter (β) quantifies the strength of an
individual’s desire to approach the center of the social group.
While this parameter is not typically measured, it may in
principle be possible to estimate in a manner analogous to a
step-selection function by replacing environmental variables with
presence of conspecifics as a covariate. The ratio between α and
β can be interpreted as the relative importance of foraging to
social cohesion, which appears to be important in predicting the
resilience of migration.

Migration timing, rate, and seasonal range location
parameters can be straightforwardly estimated from movement
data (Cagnacci et al., 2015; Gurarie et al., 2019) and synchrony of
migration timing and site fidelity are well-documented for many
migratory species (Joly et al., 2021). Thus, for example, Gurarie
et al. (2019) explicitly estimated the ranging area, timing, and
seasonal range locations for migratory caribou, identifying the
kind of inter-annual variation that is reflected in the stochastic
scenarios explored here, as well as trends in timing.

The reference memory parameter κ is, of course, impossible
to observe directly. Our model does, however, allow us to explore
in an heuristic way the conditions under which a strong cultural
tendency to migrate with certain fixed patterns can help a
population hedge against stochasticity (Abrahms et al., 2019;
Fagan, 2019). An extremely conservative behavior is the best way
to hedge against stochasticity with no directional changes (high
κ values in Figure 7), as there is no benefit to change behavior
based on recent experiences if they provide no information
about future conditions. However, this extreme conservatism is,
by definition, incapable of adapting when there is a consistent
shift in resource distribution (Figure 8). In cases where both
processes are occurring, we did see a slight improvement in
adaptability when long-term reference memory was balanced
against a strong response to recent experience (see peaks in
Figure 8).

Clearly, our exploration of the model was not exhaustive.
We did not explore, for example, the resilience of the migration
process to changes in resource timing, which would correspond
to the widely observed earlier onset of spring as measured
by green-up and flowering phenology (Cleland et al., 2007).
We hope that making the model available, including via
the interactive interface, will facilitate further independent
exploration of these processes.

4.3. Social Learning and Collective
Knowledge
Models have shown that collective knowledge is important, if
not essential, to the evolution and process of migration (Guttal
and Couzin, 2010; Shaw and Couzin, 2013; Berdahl et al., 2018).
Many migratory organisms are social, and social learning is an
acknowledged, non-genetic method for transmitting information
(Kashetsky et al., 2021). Furthermore, the general role of
social learning for improving a population’s ability to track
resources has been studied not just in animal systems, but in
synthetic systems inspired by social behavior of animals such
as optimization heuristics algorithms and the study of swarm
robotics (Şahin, 2005; Brambilla et al., 2013). Because our
model is not individual-based, we can not identify any specific
mechanism (e.g., leader-follower) of social information transfer.
But, in a generic way, our model assumes that migration is
driven by a collective decision for the timing and locations of
seasonal ranges, consistent with the known social and exogenous
(e.g., daylength related) triggers for migration. Further, the
underlying assumption of the migration “urge” is consistent with
the strong endogenous programs to migrate, e.g., the seasonal
restlessness known as Zugunruhe exhibited by many birds
(Berthold, 1999; Helm, 2006). However, in its generic diffusion-
based approach to randomness, our model indirectly captures
individual-level variation in migration parameters, an inevitable
property of any population-level process (Gurarie et al., 2019).

In contrast to the many individual-based models of the
evolution of migration (e.g., Guttal and Couzin, 2010; Anderson
et al., 2013; Shaw and Couzin, 2013), our model did not
include any selection, inheritance or birth or death processes.
For example, Anderson et al. (2013) explored the resilience of a
population under selective pressure under persistent trends and
increased stochasticity of a drifting optimal resource window,
showing that a certain amount of heritable phenotypic plasticity
is necessary to adapt successfully to climate change even at the
cost of efficiency. Our model underscores the fact that some
level of resilience and adaptability can be attained with a purely
cognitive process that balances sociality with long and short
term collective memory. Importantly, this knowledge can be
transmitted through social and cultural, rather than genetic,
pathways. The high level of sociality among migratory animals,
as well as multi-annual parent offspring bonds, are an evident
pathway for that kind of transmission. As with those evolutionary
models, however, it is clear that when changes are too rapid, no
amount of cognition can help entirely mitigate against adverse
outcomes. Furthermore, if behaviors are not sufficiently plastic
(i.e., if κ is too close to 1), then adaptation is very difficult.
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Given the slow scale of fitness selection and the constant
change in environmental conditions, it is possible that
certain inherent properties of populations, for example the
“conservatism” captured by the κ parameter, are themselves
selected for to maximize resilience over a long time scale in
stochastic environments. The structure of the reference memory
in our model was a rather simplistic approach to introduce
conservatism or lag to the shifting migration parameters. In our
model that reference memory is eventually entirely forgotten,
whereas a more sophisticated approach would separate a
slowly varying cultural memory, perhaps that is transmitted
genetically or culturally, i.e., on the scale of generations,
against shorter-scaled responses. In an evolutionary model,
we might hypothesize that the overall rates of long- and
short-term memory shifts would be related both to the scales
of short and long-term fluctuation of the resource, i.e., the
auto-correlation scale, strength of trends, and stochasticity of the
resource dynamics.

4.4. Summary
Rapid environmental change, both global warming and increased
anthropogenic development, is causing severe and dramatic
impacts to the widespread and generally successful strategy
of seasonal migration for many taxa, and the fate of many
animal migrations is a topic of increasing concern (Wilcove
and Wikelski, 2008; Kauffman et al., 2021). The ability
of animals to respond to these changes depends deeply
on their behavioral plasticity and cognitive abilities. The
importance of those abilities is in direct proportion to
the difficulty in studying them directly. By quantitatively

exploring the properties of a heuristic model that distill
many of the main properties of wild populations in dynamic
and seasonal environments, we hope to have identified
some broad patterns that might guide further empirical
exploration of the cognitive underpinnings of adaptability
and resilience.
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APPENDIX

A. SUPPLEMENTARY MATERIAL

A.1. Drifting Resource
The drifting resource function has the following properties:

1. The total amount of resource across space is constant
throughout the year.

2. At the beginning, middle, and end of the year the resource is
uniformly distributed.

3. At some peak time µt < τ/2, the resource concentrates at a
location µx < χ with a spatial deviation σx and a temporal
deviation σt (where τ is the length of the year and χ is the
extent of the spatial domain).

4. The resource peaks exactly symmetrically at time τ − µt and
location−µx with the same variances.

To generate a resource with these properties, we allocated the
resource in space as a beta distribution, where the two shape and
scale parameters vary sinusoidally in such a way as to fulfill the
criteria above. Thus:

h(x, t, θ) = χB(x/χ , a(t, θ), b(t, θ))

where χ is the maximum value (domain) of x, B(x, a, b)
is the beta distribution, θ represents the set of parameters
tr , xr , σt , σx, and the two shape parameters are given
by:

a(t) =
m

s2
(s2 +m−m2)

b(t, x′, σ ′) = (m− 1)
(
1+

m

s
(m− 1)

)

where m(t) and s(t) describe the dynamic mean
and variance of the resource peak. These equations
are solutions to the mean and variance of the
beta distribution, µ = α/(α + β), σ 2 =

αβ

(α+β)2(α+β+1) .

The means and variances themselves are Gaussian pulses,
with the mean peaking at µx at time µt with standard deviation
σt and at −µx at time τ − µt and the standard deviation
pulsing from 2χ/

√
12 (corresponding to a uniform distribution

over the domain −χ to χ) at times 0, τ/2 and τ down
to σx at tr and τ − tr , with standard deviation (in time)
σt .
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